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Abstract Peptides that possess a well defined native state
are ideal model systems to study the folding of proteins.
They possess many of the complexities of larger proteins, yet
their small size renders their study computationally tractable.
Recent advances in sampling techniques, including replica
exchange molecular dynamics, now permit a full character-
ization of the thermodynamics of folding of small peptides.
These simulations not only yield insight into the folding of
larger proteins, but equally importantly, they allow, through
comparison with experiment, an objective test of the accu-
racy of force fields, water models and of different numerical
schemes for dealing with electrostatic interactions. In this ac-
count, we present a molecular dynamics simulation of a small
β-hairpin peptide using the replica exchange algorithm and
illustrate how this enhanced sampling scheme enables a thor-
ough characterization of the native and unfolded states, and
sheds new light into its folding mechanism.

Keywords Protein folding · β-Hairpin · Replica exchange
molecular dynamics · Thermodynamics of folding ·
Simulations

1 Introduction

Protein folding refers to the process by which a polypeptide
chain reaches its biologically active three dimensional struc-
ture from a linear chain of amino acids. It is one of the most
important processes in biology, yet despite nearly 40 years of
experimental and theoretical research, the mechanisms and
underlying principles behind folding remain incompletely
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understood. Simulations offer unique insight into folding by
providing a microscopic description of the process and atom-
istic details unavailable from experiments. Simulations are
challenging due to the large number of atoms present in bio-
molecular systems, coupled with the inherent complexity of
the underlying multi-dimensional energy landscape [1–3].
The success of numerical simulations hinges on a number
of elements, including (a) a sufficiently accurate representa-
tion of the protein and solvent and (b) efficient algorithms
that allow proper exploration of the conformational space.
Force fields used to describe proteins are continually being
improved [4,5], and while still imperfect, they have been
shown to adequately reproduce both structural features as
well as the dynamics of polypeptide chains ranging from
globular proteins [6–8] to di-, tri-peptide systems [9–11],
and even including amino acid analogs [12]. In recent years,
great strides have been made in the development of novel
computer algorithms for biomolecular simulations [13,14].
Because of the high energy barriers and deep minima present
in the energy landscape of most biomolecules, conventional
molecular dynamics simulations are inadequate to yield a
satisfactory sampling of conformational space. Insufficient
sampling will lead to an incorrect statistical picture of con-
formational space and possibly to wrong conclusions being
drawn about both folding mechanisms and conformational
preferences. Hence much of the effort in algorithmic devel-
opment has focused on the design of efficient sampling tech-
niques that allow for accelerated equilibration of systems
(such as biomolecules) with complex potential energy sur-
faces and slow relaxation times. While a complete character-
ization of the folding of large, solvated, atomically-detailed
proteins remains a formidable challenge, considerable insight
into the folding process can be gleaned from the study of pep-
tides [15,16]. Peptides, in particular designed peptides with
unique ground states, possess several features in common
with proteins. While complex enough to provide a viable
model for the statistical properties of proteins with longer
sequences, they remain simple enough to be computation-
ally tractable. Recent enhanced sampling techniques have
allowed a thorough exploration of the thermodynamics of
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folding of peptides [17–19], and, through comparison with
experiments, have not only shed light into aspects of folding
of larger proteins, but also enabled the testing of the accuracy
of force fields [20–22], water models [23], and more recently
of different treatments of electrostatic interactions [24].

This account focuses on the folding of peptides, as model
systems for protein folding. We begin by reviewing some of
the common sampling techniques used for biomolecular sys-
tems and then introduce a recent advance in sampling known
as replica exchange molecular dynamics [25]. We will apply
this technique to study the folding of a small designed pep-
tide, with a β-hairpin native state and illustrate how simula-
tions are now capable of probing both the nature of the folded
and unfolded states, as well a shed new insight into folding
mechanism.

The earliest sampling techniques involved the use of um-
brella potentials [26] combined with molecular dynamics
simulations. This approach, pioneered by Brooks III and co-
workers in the context of biomolecular simulations, provided
the first insight into thermodynamics of folding of peptides
and small proteins in explicit solvent [3,27,28]. This impor-
tance sampling approach involves running simulations with
a quadratic biasing potential in a chosen reaction coordinate
for a set of conformations spanning the folded to the un-
folded state. Data collected from simulation is reweighted
(using for example the weighted histogram analysis method
(WHAM) [29,30]) to generate free energy surfaces for fold-
ing, as a function of temperature and given reaction coor-
dinates. This method is efficient, as each biased simulation
can be run independently. A more sophisticated sampling
technique, known as multicanonical sampling [31], employs
biasing potentials in the potential energy to “flatten” the en-
ergy landscape, leading to a random walk in energy space
and allowing exploration of systems where the minima are
separated by large energy barriers. Both Monte Carlo and
molecular dynamics variants of this method have been used
to explore the thermodynamics of folding of a number of
biological systems [13,32–34]. The main drawback of this
method, which has prevented its widespread use for biolog-
ical systems, lies in the difficulty in determining the biasing
potential. In the last few years, an improvement on the mul-
ticanonical method has been introduced which bypasses this
problem. This method, known as replica exchange molec-
ular dynamics (REMD) [25,35], was first developed in the
context of spin glasses in an implementation using Monte
Carlo simulations [36]. Replica exchange (REX) is also re-
ferred to as multiple markov chain [37] or parallel temper-
ing [38]. REMD involves the simulation, in parallel, of a
number of identical copies (or “replicas”) of the original sys-
tem at different temperatures. Two replicas i and j , adjacent
in temperature Ti , Tj with energies Ei and E j are periodi-
cally exchanged with a probability given by the Metropolis
criterion:

pi j =
{

1, if � ≤ 0

exp(−�), if � > 0

where� = [(βi − β j )(E j − Ei )], β = 1
kBT and kB is Boltz-

mann’s constant.
Since the escape time from local energy minima decreases

significantly at elevated temperatures, the replica exchange
method enables enhanced equilibration by treating temper-
ature as a parameter that can change with time. In addition
to leading to a more thorough exploration of conformational
space, the algorithm also ensures that the conformations sam-
pled at a given temperature belong to the canonical ensemble.
This allows application of ensemble reweighting techniques
to the simulation data to extract equilibrium thermodynamics
quantities.

The replica exchange algorithm is a powerful tool to study
the thermodynamics of folding, but care must be taken when
interpreting the kinetic information obtained from REX sim-
ulations. Indeed, replica exchange simulations generate fic-
titious dynamics that cannot be directly related to the actual
physical time. The interpretation of purely kinetic properties,
such as temporal ordering of events, is hence difficult to ex-
tract from such simulations. One means of obtaining kinetic
informations is by exploiting the fact that the REMD method
produces an equilibrium canonical distribution and that free
energy maps in appropriate coordinates can be generated and
subsequently used to extract information relevant for folding
kinetics. For instance, an L-shaped landscape along the ra-
dius of gyration and the fraction of native contacts would indi-
cate a time ordering along these parameters in which collapse
of the chain precedes ordering to the correct folded state [39].
Maps with two minima linked along the diagonal, on the other
hand, suggest concurrent collapse and formation of native
structure [3,28,40]. Limitations inherent to the free energy
formalism must however be kept in mind when attempting
to extract kinetic information from free energy surfaces. In
particular, only the free energy minima have sound meaning.
The location of the free energy barriers projected onto the
chosen reaction coordinates may not correspond to actual ki-
netic bottlenecks (transition states). In addition, it is critical
to ensure local connectivity in the map. In other words, a
pathway leading from one point on the map to another must
also visit all intermediate points between the two end points.

In what follows, we present a replica exchange investiga-
tion of the folding of a small peptide designed by Blanco et
al. [41]. This peptide was shown through NMR studies
by Constantine [42] and Friedrichs [43] to possess a native
β-hairpin structure. Computer simulations on this peptide
have been performed by Constantine et al. [44] and by Brooks
et al. [45,46]. However, the lengths of the simulations per-
formed were insufficient to yield equilibrium folding thermo-
dynamics for this peptide. Here, we show that using REMD,
we can fully characterize the equilibrium thermodynamics
for a system in which the peptide is described in atomic de-
tail using the OPLS/AA force field [47] with explicit TIP3P
water molecules [48]. We generate free energy surfaces for
folding as a function of a number of order parameters and pro-
ceed to analyze the nature of the folded and unfolded states.
A detailed comparison with experiment is offered, as well as
new insights into the mechanism of folding of this peptide.
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2 Methods and models

Our simulations focus on the YQNPDGSQA peptide, a mu-
tant of the 15-23 fragment of tendamistat (YQSWRYSQA)
[41] which possesses enhanced turn-forming propensity.
Experimentally, this peptide exhibits NOEs compatible with
β-hairpin structure [42,43].

The peptide was modeled using the OPLS/AA all-atom
empirical force-field [47], and solvated in a cubic box of
1149 TIP3P [48] water molecules. A single sodium ion was
used to neutralize the −1 charge of the peptide. A total of
3,574 atoms were present in the simulation box. The size
of the simulation box, 33.1 Å, was determined from short
constant pressure simulations at T = 280 K, equilibrated
at a physiological external pressure of 1 atm. Simulations
were carried out using GROMACS software [49–51]. Cova-
lent bonds of the water molecules were held constant using
the SETTLE algorithm [52] and the peptide bonds involv-
ing hydrogen atoms were constrained according to LINCS
protocol [53]. This allowed use of a time step of 2 f s. Non-
bonded Lennard–Jones interactions were tapered starting at
7 Å and extending to a 8 Å cut-off. Neighbor lists for the non-
bonded interactions were updated every 10 simulation steps.
Electrostatic interactions were included through the particle
mesh Ewald (PME) [54] approach. A 8 Å cut-off for the real
space force contributions and 1.2 Å grid spacing for the Fou-
rier transform in the reciprocal space were used. Fourth order
cubic interpolations were used for off-grid positions. The
temperature was controlled by Nose–Hoover algorithm [55]
with a 0.05 ps time constant.

The replica-exchange algorithm (REMD) [25,51] was
used to enhance sampling and hence improve equilibration of
the system. In total, 20 replicas of the original system were
considered, at temperatures exponentially spaced between
280 and 540 K. Exchanges of replicas at adjacent replicas
were attempted every 500 simulation steps. The same time
interval was used to periodically save atomic coordinates.
The simulations were started from a random extended con-
formation, the same one for all replicas, and were run for a
total of 60 ns. The first 10 ns were treated as an equilibration
phase. All the statistical analyses reported here were per-
formed on the last 50 ns of the trajectory. Free energy maps
were checked for statistical convergence by generating them
over increasingly longer simulation times, 10, 20 ns, etc. No
noticeable deviations were observed for maps obtained at 40
and 50 ns. In addition, maps generated using the first 20 ns
of the trajectory are similar to the maps generated from the
statistically independent last 20 ns portion of the trajectory.
Maps from both parts of the trajectory are similar to the map
averaged over the whole trajectory.

The principal component approach (PCA) [56,57] was
used to analyze the conformational ensembles generated in
the simulations. This method provides the best possible rep-
resentation of the conformational space for grouping con-
formations into clusters. Conformations are projected onto a
two-dimensional space spanned by the first two eigenvectors
of a structural similarity matrix obtained by averaging over

the atomic RMS deviations for all structures from a given
reference conformation. In the present study, all the peptide
atoms were used to construct the RMSD matrix, while the
most frequently populated native β-hairpin was used as the
reference state. Similar calculations on only the Cα atoms did
not change the conclusions of this paper. In addition, a vari-
ant of PCA, the principal coordinate analysis [56], was car-
ried out for 1,000 selected conformations recorded at evenly
spaced time intervals along the entire trajectory. The matrix
of Cα RMS deviations among all pairs of structures was used
as the dissimilarity matrix. Results obtained by this method
were consistent with those obtained from the straightforward
principal component approach.

3 Results

Free energy surfaces obtained from the REMD simulations
are plotted as a function of the first two principal compo-
nents (PC1 and PC2) at T = 280 K and T = 370 K in Fig. 1
a and b. Both surfaces exhibit a global minimum at (PC1 =
−4.2,PC2 = −1.0) as well as a number of shallow local
minima in other regions of the map. Conformations belong-
ing to the global minimum correspond to native state of the
peptide, while local minima are associated with unfolded
conformations. The native state is seen to be about 2–3 kT
lower in free energy than typical denatured-state conforma-
tions irrespective of the temperature considered. The dena-
tured state displays an additional conformational clustering
at lower temperatures. The free-energy barriers separating
these clusters are on the order of one kT and are thus unlikely
to serve as significant kinetic barriers to folding. The native
state in our simulations (corresponding to the most populated
conformation) has a β hairpin topology (shown in Fig. 2) .
It is characterized by specific inter-strand hydrogen bonds
that are formed between backbone oxygens and nitrogens
(three of which are shown in Fig. 2 ) and a turn at positions
ASN3-GLY6.

We now turn to a more detailed analysis of the geometry
of the native state, as well as a comparison with experiment.

3.1 The native state: Comparison with experiment

Nuclear Overhauser effect constraints

Nuclear Overhauser effect constraints (NOEs) are the pri-
mary source of experimental structural information about
the native state of peptides. For our peptide, two NMR stud-
ies [41,43] yielded sets of NOEs corresponding to differing
ranges of interatomic contacts along the peptide sequence.
Short-range constraints are important for identifying local
structure while long-range contacts determine the global struc-
ture of the system. Figure 3 shows a comparison of 23 long-
range interstrand NOEs determined experimentally by Fried-
richs et al. [43] with those obtained through simulation. NOEs
from simulation were obtained by averaging over all the
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Fig. 1 Free energy map of the YQNPDGSQA peptide plotted as a function of the first two principal components at: (a) T = 280 K and
(b) T = 370 K. Energies are shown in units of kT . The map exhibits a global minimum at (PC1 = −4.2, PC2 = −1.0) corresponding to
β-hairpin conformations. The local minima present in the map are about 2–3 kT higher than the global minima and correspond to unfolded
conformations

Fig. 2 A representative conformation of the most populated state ob-
served in our simulations. Interstrand hydrogen bonds characteristic of
the β-hairpin structure are depicted

conformations belonging to the native state minimum at
T=280 K. The native state was delineated from the free energy
surface in Figure 1 a as consisting of all conformations lying
in a circle of radius 0.45 centered around the minimum point

(PC1=−4.2,PC2=−1.0). The largest and smallest deviation
recorded in the averaging are shown in Fig. 3 as a measure of
the magnitude of the error present in the data. Aside from the
NOEs involving hydrogens of the TYR1 side chain, the the-
oretical calculations are seen to be in good agreement with
experiment. We note that the comparison of experimental
and simulation NOEs is complicated by the fact that experi-
ment and simulation deal with different statistical ensembles.
For this peptide, Constantine et al. [42] showed that a single
conformation could not satisfy all the NOE constraints. An
assumption had to be introduced that an ensemble of equally
probably conformations, rather than a single conformation,
exists, and that the NOEs are satisfied as an average over this
ensemble. This ensemble may not be representative of the
one found in our simulations.

Hydrogen bonding in the native state

The NMR refinement simulations yielded a set of conforma-
tions satisfying the observed NOEs [42]. A common feature
of these conformations is that they all possess a β-hairpin
structure, characterized by a well defined network of hydro-
gen bonds.

Figure 4 shows a schematic of the native state of our
peptide with a selected set of hydrogen bonds indicated by
lines. In NMR refinement experiments, each hydrogen bond
has a relative formation probability, or fractional occupa-
tion Ph , determined by the set of experimental conditions.
For the purpose of comparison with our simulations, we
included in Fig. 4 only those bonds that have the highest
Ph > 0.3 [42]. These are bonds formed between backbone
atoms GLY6-H and ASN3-O (bond #1), ASN3-H and SER7-
O (bond #2), ALA9-H and TYR1-O (bond #3) and ASP5-H
and ASN3-O (bond #6). The other two bonds shown in Fig. 4
involve side-chain to backbone bonding between ASP5-H
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Fig. 3 Twenty-three long-range nuclear overhauser effect constraints (NOEs) spanning the two strands of the native peptide [42,43]. Theoretical

values were obtained through ( 1
r6 )

1
6 averaging over all native conformations. The error bars report the largest and smallest deviation from the

mean values we observed

and ASN3-OD (bond #4) and GLN2-HE and GLY6-O (bond
#5). Finally, hydrogen bond #7 is formed between side chain
groups of ASN3-HD and ASP5-OD. Bonds 1, 4 and 6 are
short-range in nature and characterize the local structure around
the turn region, while bonds 2, 3 and 5 correspond to long-
range bonds. The inter-strand bonds are best suited for describ-
ing how the native structure is acquired during folding. In a
later section, we will use the hydrogen bonds involving back-
bone atoms (bonds 1, 2 and 3) to probe the mechanism of
hairpin formation.

The experimentally and computationally determined frac-
tional occupation probabilities for the hydrogen bonds dis-
played in Fig. 4 are listed in Table 1.

Following the definition of Friedrichs et al. [42], we con-
sider that a hydrogen bond is formed between a pair of ac-
ceptors and donors if their mutual distance is less than 2.5 Å.
Good agreement between simulation and experiment is ob-
served for bonds 1, 2, 6 and 7, while bond 3 is overstabilized
in our simulations and bonds 4 and 5 under stabilized. The
failure of our simulations to describe properly bond 4 is sur-
prising, since this bond is located in the turn region which is
otherwise well represented by bonds 7, 1 and 6. We note that
as was the case for the NOE constraints, the hydrogen bond
probabilities in simulation and in experiment are computed
over different ensembles. While we know that our simula-
tions are averaged over a subset of the Boltzmann distribu-
tion of conformations at a given temperature, the ensemble
of NMR simulations is generally poorly characterized [42].
It is hence unclear to what extent differences in experimental

Fig. 4 A schematic representation of the native β-hairpin state of the
peptide. A network of interstrand hydrogen bonds is indicated by dashed
lines. The thickness of each line reflects the fractional population of the
associated bond, or its “strength”. Only the bonds most frequently pop-
ulated in experiment [42] are shown here

and computational hydrogen bond probabilities are due to
inaccuracies in force field or solvent models alone.
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Table 1 Fractional occupation probabilities for the hydrogen bonds that were suggested by the NMR experiments to be most stable [42]

Hydrogen bond # 1 2 3 4 5 6 7

Present simulation 0.97 0.99 0.97 0.08 0.01 0.26 0.35
NMR data 0.88 0.78 0.40 0.40 0.36 0.35 0.33

See Fig. 4 for the definition of the hydrogen bond numbers

Fig. 5 Generalized order parameter S2 of the Lipari-Szabo [58] model-free formalism obtained for Cα − Hα vectors of the peptide. Theoretical
data computed for the entire conformational ensemble at T=280 K and the native state conformations separately are compared to the NMR
results [43]

Order parameters

The magnetic resonance relaxation constants offer another
comparison with experiment. Following [42] we use the Li-
pari–Szabo model [58] to compute these constants. Of par-
ticular interest is the generalized order parameter, S2 which
quantifies the relaxation of the dipole–dipole interaction be-
tween two nuclei. In NMR studies of biological molecules, S2

is used as a measure of the mobility of amino acid residues, in
other words, of the degree of conformational order. Values of
S2 close to 0 indicate virtual absence of any stable structure
while values close to 1 mean that the conformational ensem-
ble is dominated by a single conformation. When applied to
small peptides (as opposed to proteins), the generalized order
parameter reflects only rapid motions of the nuclei and thus
represents a lower limit of the actual degree of disorder [42,
43]. If slow motions with significant amplitudes occur, then
a realistic model would produce lower S2 values than experi-
ment. And conversely, if the real system is subject to fast mo-
tions only, then theoretical and experimental S2 values should
closely match. Figure 5 displays S2 values of Cα−Hα vectors
of all nine residues of the studied peptide. Higher theoretical
S2 values indicate that the simulated native state ensemble is
slightly too ordered compared with experiment but, overall,
in good agreement with it. In particular, the trends seen in the
distribution of theoretical S2 values across residues indicate

that the terminal residues are less structured than all those in
the center of the sequence, except for PRO4 which displays
an enhanced mobility. Exactly the same trend is revealed in
the experimental data. The entire conformational ensemble
computed at T=280 K is seen to be considerably less struc-
tured than the native state alone. The lower S2 values of this
ensemble do not contradict experiment; rather, they indicate
the presence of conformational transitions that occur on a
longer than picosecond–nanosecond time scale.

3.2 Denatured state

We define the denatured state according to the free energy
map shown in Fig. 1 as consisting of all conformation out-
side a circle of radius 0.45 centered at (−4.2,−1). Second-
ary structural elements are assigned to these conformations
following the PROSS classification scheme developed by
Rose et al. [59]. This method assigns secondary structure
based on backbone dihedral angles. The secondary structure
computed here are summarized in Figs. 6 and 7. As shown in
Fig. 6, the most common conformational state of the peptide
in the unfolded state is a random coil, with residues GLN2,
GLY6, SER7 and GLN8 in this state more than 50% of the
time. A small amount (up to 20%) of β strand structure is
observed for residues spanning GLN2 to ASP5. In addition,
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Fig. 6 Secondary structure across residues

Fig. 7 Temperature dependence of the secondary structure content of the denatured state, averaged over all nine residues. A gradual vanishing of
the ordered structure is observed as the temperature is raised

residues SER7 and GLN8 show an enhanced propensity to
form turns in the unfolded state, a propensity that disappears
completely in the folded state. Perhaps surprisingly, residues
PRO4 and ASP5 which form a turn in the native hairpin,
do not exhibit any preference for this secondary structure
in the unfolded state. The most structured residue found in
the unfolded state is ASN3, which displays 54% PPII in the
unfolded state. The second most structured residue is PRO4
with 44% of PPII conformations. The most structurally stable

cluster in the denatured ensemble appears to be ASN3-GLY6
segment.

Figure 7 shows the temperature dependence of the sec-
ondary structure content. The ordered secondary structure
content is seen to gradually diminish as the temperature is
elevated. The population of random coils increases from an
average of 60% at T=280 K to 70% at T =370 K, with a
resulting drop in population of PPII, β-strand and turns
structures.
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Fig. 8 Free energy map as a function of the RMSD deviation from native conformation (shown in Fig. 2) and the radius of gyration Rg at
temperatures (a) T=280 K and (b) T=370 K. The energies are displayed in units of kT

3.3 Folding mechanism

Insights into the folding mechanism can be obtained from an
analysis of the free energy surfaces projected onto appropri-
ately chosen order parameters. Figure 8 shows the free energy
maps at T=280 K (a) and at T=370 K (b), plotted as a function
of the gyration radius Rg and Cα RMS deviation from the
native β-hairpin. These two order parameters provide com-
plementary information about conformational changes that
the peptide undergoes as it folds. RMSD describes the struc-
tural similarity of a given conformation to the native state,
while Rg is a measure of the peptide’s overall size. The free
energy maps at both temperatures show two major minima
corresponding to the folded and unfolded states. The peptide
is seen to undergo in a first step a substantial reduction in size,
from Rg ∼ 8 Å to about 6 Å, and starts to adopt some resem-
blance to the native state, with the RMSD dropping from 6 to
about 2 Å. A second step involves further compaction of the
protein (from Rg ∼ 6 – 5 Å) with additional formation of
native contacts. This mechanism does not follow the classical
two-step “collapse followed by rearrangement to the folded
state” often observed for proteins with β-sheet content [39].

In order to determine the order in which the backbone
hydrogens bonds are formed, we examine the free energy
surfaces as a function of the distances d1, d2 and d3 be-
tween the atoms forming the hydrogen bonds #1, #2 and #3
defined in Figure 4. To further probe side-chain formation,
we plot the free energy surface as a function of the distance
d4 between the Cδ atoms of GLN8 and GLN2. These two
residues form the only long-range contact in the native state
that is not involved in the formation of the hairpin turn. This
contact serves as a measure of the time ordering of tertiary
and secondary structure formation. The free energy maps at
T = 280 K for four distance pairs are plotted in Fig. 9: (a)
for d1 − d2, (b) for d1 − d3, (c) for d1 − d4 and (d) for
d2 − d3.

Figure 9a indicates that for the majority of folding path-
ways, hydrogen bond #1, located in the turn region, forms
before hydrogen bond #2. Figure 9d shows that the termi-
nal hydrogen bond #3 is formed after the middle bond #2.
Taken together, these two maps suggest the following order-
ing of hydrogen bonds: bond #1 is formed first, followed
by #2 and finally by #3. This ordering is confirmed by Fig-
ure 9b. The overall folding mechanism emerging from the
analysis of Figure 9 a, b and d is that of a classical hair-
pin zipper. Folding is initiated in the turn region and prop-
agated onwards along the sequence until the native hairpin
is formed. The interpretation of the time ordering between
hydrogen bond formation and the formation of side-chain
contacts is less clear-cut. Indeed, Fig. 9c suggests that the
following two scenarios can occur: (a) side chains contacts
are formed first, followed by backbone hydrogen bonds, (b)
hydrogen bonds form first, then side chain contacts. This
dual mechanism is supported by the data shown in Fig. 10, in
which two folding trajectories from our simulations are pro-
jected onto the two-dimensional d1 − d4 free energy surface
In the first REX trajectory, (shown in black), the side chains
come into contact only after the turn hydrogen bond #1 is
formed. Zipping of the peptide backbone precedes the for-
mation of long-range contacts in this case. The second REX
trajectory (shown in green), follows a different folding route.
The side-chain contact for this trajectory is formed before
formation of the hydrogen bond #1. In this case, collapse
followed by folding/zipping is a more apt description of the
folding process. An examination of the temperature depen-
dence of the free energy maps of Fig. 9 (data not shown)
reveals that the relative population of the available folding
pathways strongly depends on the denaturing conditions. In
particular at T=300 K, a new channel opens up that allows
for the middle hydrogen bond #2 to be formed after the ter-
minal bond #3. At a more elevated temperature, T = 344 K,
the terminal bond #3 can exist even if the turn bond #1 is
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Fig. 9 Free energy maps at T=280 K for four pairs of order parameters (d1, d2, d3 and d4 defined in the main body of the text)

Fig. 10 An illustration of the collapse and zipping initiated folding mechanisms observed for the β-hairpin peptide in our simulations. Two
folding trajectories obtained from the replica exchange (REX) simulations are projected onto two-dimensional subspace spanned by the distances
d1 and d4. The black curve shows a trajectory in which the backbone hydrogen bonds that define the β-hairpin topology are formed before the
side-chain atoms make contact. The green line represents a trajectory in which the side chain contact is made first and only then do the hydrogen
bonds form
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not formed. In sum, our data indicate a greater variability of
kinetic pathways for folding at high temperatures.

4 Discussion

In this account, we have presented a comprehensive com-
putational study of the folding thermodynamics of a small
β-hairpin peptide. The peptide is a mutant of the 15–23 frag-
ment of tendamistat, in which the S17-Y20 residues were
replaced by the turn-inducing NPDG segment [41]. Separate
NMR studies by Constantine et al. [42] and Friedrichs et
al. [43] demonstrated that this peptide exhibits NOE signals
compatible with stable β-hairpin conformations [41].

Molecular dynamics simulations of this peptide were re-
ported by Constantine et al. [43] and later by Brooks et al. [45,
46]. Using short simulations on the order of a few nanosec-
onds, Constantine probed the local conformational dynamics
of the peptide around one of the native conformations de-
rived from NMR experiments. Brooks was able to observe
a number of folding events through self-guided molecular
dynamics simulations [45,46], with the peptide described
by the all-atom AMBER force field and using an explicit
solvent model. Although β-hairpin conformations were ob-
served, the simulations of Brooks did not provide conclusive
evidence that they constituted the ground state structure. The
present work is the first to unambiguously demonstrate that
the β-hairpin conformation is the native state of this peptide.
This was possible because we used the enhanced sampling
REMD technique [25]. We were able to run our simulations
over a sufficiently long period of 50 ns (significantly longer
than recent REMD studies reported for other, larger sys-
tems [19,60,61]) to generate equilibrium free energy maps of
the studied peptide. The quality of equilibration was checked
through thorough statistical analysis. The free energy sur-
faces in Fig. 1 clearly show that β-hairpins have lower free
energy than any other sampled conformation.

The native state obtained in the present study agrees well
with the one determined from experiment. We were able to
satisfactorily reproduce a number of experimental parameters
including NOE constraints and generalized order parame-
ters of nuclear magnetic relaxation. In addition, our simu-
lations correctly predict the network of hydrogen bonds that
defines the topology of the native state. The native conforma-
tions generated in this work have low (<1 Å) Cα RMS devia-
tions from the β-hairpin conformation designated by Brooks
et al. [45] as the native state. Our simulations suggest that the
unfolded state of the peptide is about 2 kCal/mol higher in
free energy than the native state. This disagrees with the value
of 12.7 kCal/mol reported in the simulations by Brooks [45].
Differences in the force-fields employed as well as insuffi-
cient equilibration in the work by Brooks [45] likely account
for this discrepancy.

In addition to identifying the native state, our simula-
tions allow us to characterize the nature of the unfolded state
ensemble [62]. Whether or not the unfolded state can be
described as a random coil has recently been the subject of

much controversy. An argument in favor of a random charac-
ter of the unfolded state is that the size distribution of dena-
tured conformations obeys random-coil statistics [63]. On
the other hand, the observation of considerable amounts of
secondary structure [63,64] as well as the ability of some pro-
teins to retain native-like topology in the unfolded state [65,
66], support non-randomness of the denatured state. Further
evidence of structuring in unfolded conformations comes
from the finding that local steric effects considerably restrict
the size of the accessible conformational space [67], lead-
ing to a breakdown of the Flory isolated-pair hypothesis for
polypeptide chains. Polyproline II (PPII) conformations have
been proposed as the dominant motif in the unfolded states
of proteins and peptides to explain the observed persistent
structure in the denature state [68]. We probed the structure of
the unfolded conformations of our peptide using the PROSS
algorithm of Rose [59]. Our results indicate that the unfolded
peptide is only about 20% PPII at T = 280 K and more than
60% random coil. This ratio further drops to 15%/70% at
higher temperatures. Hence, our data do not support the idea
that PPII conformations represent the “universal” structure
of the denatured state. We also find that secondary structure
is not evenly distributed along the sequence. The maximum
of non-coil structure is observed around PRO4. Surprisingly,
the pre-proline residue ASN3 contains more PPII structure,
54%, than proline residue PRO4, 45%. ASN3 and PRO4 res-
idues were found to have the lowest content of random coil(
<30 %). In addition, the pre-proline residue ASN3 exhib-
ited restricted conformational flexibility, in line with the re-
cent reassessment of allowed regions in the φ,ψ dihedrals
space [69]. Furthermore, we find that the amount of second-
ary structure in the unfolded state depends on both residue
type and position along the sequence. For instance, glutamine
residues 2 and 8 display different amounts of secondary struc-
ture despite being of the same type. This observation is at odds
with the recent work of Eker et al. [70] which suggests that
conformational preferences of amino acids in the unfolded
state are specific to their type. Finally, our data also indicates
a slight decrease in the amounts of extended β conformations
as the temperature is raised.

Our simulations further allowed us to generate new in-
sights into the folding mechanism of this peptide. Two main
models have been proposed to explain the folding of β-hair-
pin forming peptides and proteins [71]. The first one, known
as the hairpin zipper model, predicts that folding is initiated
through formation of the hydrogen bond located nearest to the
β-turn. Once this turn hydrogen bond is in place, the native
structure then further propagates along both strands, forming
each consecutive inter-strand hydrogen bond in sequence un-
til the native hairpin is complete. The second model stipulates
that the protein first undergoes a collapse transition (either
hydrophobic or through side-chain contacts) and then pro-
ceeds to the native state from these collapsed conformations.
There is experimental and theoretical support for both models
(see [71,72] for recent reviews). More recently, a third mech-
anism of β-hairpin formation has been described [73] that in-
volves a lateral motion of strands with respect to each other.
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For our peptide, an analysis of the free energy surfaces for
folding projected onto different coordinates suggests that the
peptide can fold either by a zipper or by a collapse-initiated
mechanism. The existence of multiple pathways for folding
has also been noted in simulations by Higo et al. [74] on a
10-aa long β-hairpin peptide and by Wei et al. [73] on the C-
terminal β-hairpin of protein G. Simulations by Brooks et
al. [46] on the peptide studied in our work, only identi-
fied pathways corresponding to the collapse-initiated model.
While this difference can be attributed to the use of different
force fields (implying a dependence of folding mechanism
on force fields), it is likely that insufficient statistics in the
work of Brooks [46] are to blame. This highlights the impor-
tance of using enhanced sampling techniques that allow all
possible pathways for folding to be visited. Finally, we note
that recent work by Swope et al. [75] suggests that the dis-
tinction between the two folding mechanisms may be a mat-
ter of pure semantics. Indeed, using different definitions of a
hydrogen bond lead to the favoring of one folding model over
the other. Our simulations indicate that the relative population
of folding routes is temperature dependent, with more path-
ways linking the folded and unfolded states at higher tem-
peratures and the distinction between the two folding models
becoming increasingly blurred.

5 Conclusion

The advent of enhanced sampling protocols such as replica
exchange molecular dynamics, coupled with the availabil-
ity of reasonably priced, fast processors, is opening the way
for a full characterization of the thermodynamics of fold-
ing of proteins. As shown in this account, we are already
able to efficiently generate equilibrium free energy maps for
small peptides and characterize their folding mechanisms.
We anticipate that future research in the field of folding will
shift from a characterization of the native state to the inves-
tigation of the nature of the “other half” of the folding prob-
lem, the unfolded state. Because of its vastness, the unfolded
state is difficult to probe using experimental and theoretical
techniques. In addition, unfolding studies are complicated
by the fact that different denaturing conditions yield different
denatured ensembles. While simulating the high temperature
unfolding of peptides and proteins is reasonably facile, the
simulation of other means of denaturation (chemical, pres-
sure, surface-induced, and so forth) poses a significant chal-
lenge. Pioneering work in the field of unfolding simulations
has recently been undertaken by Paschek et al. [76], who used
replica exchange molecular dynamics to probe the mecha-
nisms of both temperature and pressure denaturation of the
β-hairpin C-terminal domain of protein G. The mechanisms
involved in chemical (using for instance urea or guanidium
chloride) or surface induced unfolding, and how they dif-
fer from temperature and pressure denaturation, remain open
questions. Equally intriguing is the process of cold dena-
turation, a challenging matter to tackle via simulation, as
trapping in energy minima becomes a particularly serious

issue at low temperatures. Only through the use of enhanced
sampling protocols will it be possible to characterize, at a
microscopic level, the mechanism by which proteins unfold
at low temperatures [77].

Extending the work done on peptides to proteins (both
with respect of folding and unfolding simulations) remains
a challenge: as the size of the system grows, so do the num-
ber of replicas and the length of time that each replica needs
to run. Recently, Garcia and Onuchic [61] have successfully
used REMD to study the thermodynamics of folding of frag-
ment B of protein A, a small 46-residue three helix bun-
dle protein. This work currently constitutes the state of the
art in protein folding simulations for systems described in
fully atomic detail, with explicit solvent molecules. We envi-
sion that in the near future, similar studies will be possible
on other, larger proteins and that REMD will emerge as an
important technique for the study of the peptide and protein
aggregation processes implicated in amyloid diseases.

Still out of our grasp is a full kinetic analysis of fold-
ing. In order to ensure reliable statistics, hundreds of fold-
ing events would need to be recorded. Bearing in mind that
a small protein folds on the order of milliseconds to sec-
onds, a straightforward molecular dynamics simulation from
an unfolded state to the folded state would be prohibitive.
In addition, such an exercise would only be useful if the
force fields are sufficiently accurate to find the native state
from a random starting configuration. Here again is where
enhanced sampling methodologies can play a role. With reli-
able sampling of conformational space, one is able to assess
and refine, through comparison with experiment, the qual-
ity of force fields. With improved force fields, it is likely
that we will be able in coming years to extract meaningful
kinetic information from simulation, either from free energy
surfaces generated by enhanced sampling methods, or using
distributed computing schemes such as the one implemented
in “Folding@Home” [16,78].
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